Francisco Martínez-Álvarez is a Full Professor in the Computer Science Division at Pablo de Olavide University. He received his Degree in Telecommunication Engineering in 2005, his M.S. Degree in Computer Science in 2007 and his Ph.D. in Computer Science in 2010, awarded with the extraordinary Ph.D. prize.
He has completed up to four long research stays at top universities: Université de Lyon 1, New York University, Universidad de Chile and Université de Lyon 2.
His main research lines include time series, data science and big data analytics, with more than 190 papers published. He has supervised eight doctoral theses and led many research projects, including four Spanish and two European ones. Along with Prof. Alicia Troncoso, he founded the Data Science & Big Data Lab in 2015.
The commitment to the knowledge transfer to industry is undoubtful. During the last years, he has been the principal investigator in many IoT, machine learning, data mining, and artificial intelligence projects, cooperating with more than 10 firms.
From 2013 to 2020, he also held management positions at Pablo de Olavide University, such as Secretary of the School of Engineering, Head of the Division of Computer Science or General Director for Infrastructures, Campus and Sustainability.
He has been ranked as the world’s top 2% scientist by Stanford University in 2022 and 2023.
Teaching
At Pablo de Olavide University, I am currently teaching in Degree of Information Systems Engineering:
- Distributed Systems (Coordinator)
- Algorithmics – II (Coordinator)
Additionally, I teach at Universidad Nacional de Educación a Distancia (UNED), in the Degree in Computer Engineering. The subjects I have been teaching since 2007 are:
- Computer networks
- Fundamentals of digital systems
- Computer engineering – I
- Computer engineering – III
At Pablo de Olavide University, I am teaching in Master in Computer Science:
- IT Management (Coordinator)
- High Performance Computing
Also at Pablo de Olavide University, I am teaching in Master in Advanced Bioinformatics Analysis:
- Data Science and Big Data
Projects
- 1. Intelligent Methods for Structures, Elements and Materials. Principal Investigator: Marijana Hadzima (Partner Pablo de Olavide University: Francisco Martínez Álvarez). Funding: European Union (KA2). 2023-2026.
- Earthquake resilient schools in the region of Algarve and Huelva. Principal Investigator: João M. C. Estêvão (Partner Pablo de Olavide University: Francisco Martínez Álvarez). Funding: European Union (POCTEP). 2016-2020.
- Automatic diagnosis of toxoplasmosis chorioretinitis in children using AI techniques. Principal Investigator: Miguel García Torres. Funding: Consejo Nacional de Ciencia y Tecnología (CONACYT), Paraguay. 2019-2021.
PID2023-146037OB-C22. Green machine learning for water and climate change
Principal Investigator: Alicia Troncoso Lora, Francisco Martínez Álvarez
2024-2026
TED2021-131311B-C22. Soluciones digitales para mantenimiento predictivo de plantas fotovoltaicas
Principal Investigator: Alicia Troncoso Lora, Francisco Martínez Álvarez
2022-2024
PID2020-11795RB-C21. Efficient and explainable deep learning, transfer learning and online learning for health, sustainability and connected mobility
Principal Investigator: Alicia Troncoso Lora, Francisco Martínez Álvarez
2021-2023
TIN2017-88209-C2-1-R. Big Data Streaming: Análisis de datos masivos continuos. Modelos predictivos
Principal Investigator: Alicia Troncoso Lora, Francisco Martínez Álvarez
2018-2020
RTC-2016-5524-2. IA2GIP: Inteligencia artificial aplicada a la gestión de plagas
Principal Investigator: Francisco Martínez Álvarez
2016-2018
TIN2014-55894-C2-2-R. Big Time-Aware Data: Análisis de datos masivos indexados en el tiempo
Principal Investigator: Alicia Troncoso Lora
2015-2018
TIN2011-28956-C02-01. Análisis inteligente de información biomédica
Principal Investigator: Jesús S. Aguilar Ruiz
2012-2015
TIN2010-09967-E. Creación de la Red Española de Series Temporales
Principal Investigator: Héctor Pomares Cintas
2010-2011
TIN2010-09163-E. Red Española de Minería de Datos y Aprendizaje
Coordinator: José C. Riquelme Santos
2010
TIN2006-27675-E. Red Española de Minería de Datos
Coordinator: José C. Riquelme Santos
2007-2008
TIN-68084-C02-00. Modelos Avanzados en Minería de Datos: Escalabilidad y Aplicación Biológica
Principal Investigator: José C. Riquelme Santos
2008-2011
TIN2004-00159. MINERVA: Técnicas emergentes de minería de datos para la extracción de conocimento en grandes
volúmenes de información: aplicación a datos científicos e industriales
Principal Investigator: José C. Riquelme Santos
2005-2007
DIGITAL AERO. Plataforma digital e inteligente de servicios de ingeniería de producción aeronáutica
Principal Investigator: Francisco Martínez Álvarez, Miguel García Torres.
2022-2024
Industrial partner: Indaero
WINDIAG. Modelos predictivos de fallos en aerogeneradores a través de técnicas de aprendizaje basado en inteligencia artificial
Principal Investigator: Francisco Martínez Álvarez, Alicia Troncoso Lora
2022-2023
Industrial partner: Isotrol
APIBOT: Detección y clasificación de desperfectos en pavimentos aeroportuarios mediante aprendizaje automático
Principal Investigator: Francisco Martínez Álvarez
2020-2021
Industrial partner: Soologic
Net LIoT: Diseño e implementación de red y plataforma Smart Lantia IoT
Principal Investigator: Francisco Martínez Álvarez
2018-2020
Industrial partner: Lantia IOT
ITC-20181064. SMARTPORTS: Plataforma digital de servicios de logística portuaria
Principal Investigator: Gualberto Asencio Cortés
2018-2020
Industrial partner: ec2ce
REGIONS4FOOD. Confección de un catálogo de inventario de datos y tecnologías del sector agroalimentario
Principal Investigator: Gualberto Asencio Cortés
2018-2019
Industrial partner: Junta de Andalucía (Consejería de Agricultura, Pesca y Desarrollo Rural)
CONBIDA. Construcción basada de big data: modelos predictivos para la transformación digital de procesos en la construcción
Principal Investigator: Alicia Troncoso Lora
2018-2019
Industrial partner: Detea
ANAMERLEC. Análisis de datos asociados a la predicción del mercado eléctrico
Principal Investigator: Alicia Troncoso Lora
2017-2018
Industrial partner: Isotrol
easyM2M: Nuevos protocolos de comunicación para la creación de Smart Cities
Principal Investigator: Francisco Martínez Álvarez
2017-2018
Industrial partner: Lantia IOT
ITC-20161178. AQUASIG: Sistema inteligente de gestión del abastecimiento y consumo urbano de agua
Principal Investigator: Francisco Martínez Álvarez
2016-2018
Industrial partner: Geographica
CECOVEL. Centro de control del vehículo eléctrico
Principal Investigator: Jesús Riquelme Santos
2015-2017
Industrial partner: Red Eléctrica de España
ITC-20151078. Optimización de la conservación de la infraestructura ferroviaria para transporte urbano
Principal Investigator: Francisco Martínez Álvarez
2015-2017
Industrial partner: ec2ce
PRY153/14. Servicio web para el acceso a la información en portales open data
Principal Investigator: Alicia Troncoso Lora
2014-2016
Industrial partner: Junta de Andalucía (Consejería de la Presidencia)
EXP377/09/I/00. Estudio de condicionantes de la ocurrencia de incendios forestales y cambios de ocupación de suelo en Andalucía con minería de datos
Principal Investigator: Francisco Martínez Álvarez
2009-2010
Industrial partner: Junta de Andalucía (Consejería de Medio Ambiente)
UPO‐1380516. Machine learning para datos temporales de alta frecuencia: algoritmos y aplicaciones
Principal Investigator: Alicia Troncoso Lora, Federico Divina
2021-2023
P20-00870. Fusión de deep learning para datos temporales: movilidad y agricultura sostenible
Principal Investigator: Alicia Troncoso Lora
2021-2023
P12-TIC-1728. Técnicas avanzadas para el análisis de datos temporales. Aplicación a terremotos y contaminación ambiental
Principal Investigator: Alicia Troncoso Lora
2014-2018
APPC1212345. Servicio de predicción de terremotos en tiempo real en Chile
Principal Investigator: Francisco Martínez Álvarez
2014-2015
APPC1213439. Prototipo de predicción de terremotos en tiempo real: aplicación para la Península Ibérica.
Principal Investigator: Francisco Martínez Álvarez
2013-2014
P07-TIC-02611. Sistemas Inteligentes para Descubrir Patrones de Comportamiento. Aplicación a Bases de Datos Biológicas
Principal Investigator: Jesús S. Aguilar Ruiz
2008-2012
R&D Activities
- Results in Engineering (RINENG). VSI – Explainable AI: novel approaches and applications in engineering (deadline September 15th, 2024).
- AIMS Mathematics (AIMS Math). SI – Advances in Time Series Forecasting (deadline June 30th, 2024).
- Remote Sensing (REM SENS). SI – Advanced Machine Learning Techniques for High-Resolution Remote Sensing Data Analysis
- Computers and Geosciences (CAGEO). VSI – Emerging trends in big data analytics and natural disasters
- International Journal of Computational Intelligence Systems (IJCIS). SI – Stream Processing: Real-Time Big Data Analytics with Applications
- Energies (ENERGIES). SI – Data Science and Big Data in Energy Forecasting with applications
- Neurocomputing (NEUCOM). VSI – Selected papers from 11th International Conference on Hybrid Artificial Intelligent Systems (HAIS’16)
- Remote Sensing (REM SENS). SI – Advanced Machine Learning and Big Data Analytics in Remote Sensing for Natural Hazards Management
- Energies (ENERGIES). SI – Data Science and Big Data in Energy Forecasting
- Computers & Geosciences (CAGEO). VSI – Big data and natural disasters: New approaches for temporal and spatial massive data analysis
- Energies (ENERGIES). SI – Energy time series forecasting
- Computational Intelligence in Neurosciences (CIN). SI – Applications of Computational Intelligence in Time Series
- Nature | Letters (NATURE)
- Applied Soft Computing (ASOC)
- IEEE Transactions on Knowledge and Data Engineering (TKDE)
- Neurocomputing (NEUCOM)
- Integrated Computer-Aided Engineering (ICAE)
- Applied Energy (APEN)
- IEEE Transactions on Systems, Man and Cybernectics: Systems (SMCA)
- Computers and Geosciences (CAGEO)
- Expert System With Applications (ESWA)
- Advances in Data Analysis and Clasification (ADAC)
- Neural Processing Letters (NEPL)
- IEEE Transactions on Industrial Informatics (TII)
- Electric Power Systems Research (EPSR)
- Memetic Computing (MEME)
- Knowledge and Information Systems (KAIS)
- Journal of Applied Geophysics (APPGEO)
- Journal of Environmental Informatics (JEI)
- Pattern Recognition Letters (PRLETTERS)
- Computational Intelligence (COIN)
- Solar Energy (SE)
- Earth Science Informatics (ESIN)
- Annals of Management Science (AMS)
- Neural Computing and Applications (NCAA)
- Computers and Electronics in Agriculture (COMPAG)
- Computational Materials Science (COMMAT)
- Earthquake Engineering and Engineering Vibration (EEEV)
- International Journal of Pattern Recognition and Artificial Intelligence (IJPRAI)
- Applied Computational Intelligence and Soft Computing (ACISC)
- Soil Dynamics and Earthquake Engineering (SOILDYN)
- International Journal of Mechanics and Materials in Desing (MAMD)
- Remote Sensing (REMOTESENS)
- Entropy (ENTROPY)
- Croatian Operational Research Review (CRORR)
- Scientia Iranica Journal (SI)
- The R Journal (R)
- Information Fusion (INFFUS)
- Data and Knowledge Engineering (DATAK)
- Jourmal of Environmental Management (JEMA)
- Advances in Software Engineering (ADES)
- Advanced Engineering Informatics (ADEVI)
- Applied Computing and Informatics (ACI)
- NRIAG Journal of Astronomy and Geophysics (NRIAG)
- Steering Committee in IEEE International Conference on Smart Systems and Technologies (SST’22, SST’24)
- Organizing Committee in International Conference on Hybrid Artificial Intelligence Systems (HAIS’22, HAIS’23)
- Organizing Committee in International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO’22, SOCO’23)
- Organizing Committee in International Conference on Computational Intelligence in Security for Information Systems (CISIS’22, CISIS’23)
- Organizing Committee in International Conference on EUropean Transnational Educational (ICEUTE’22, ICEUTE’23)
- Special Session in International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO’21)
- Special Session in International Conference on EUropean Transnational Educational (ICEUTE’20)
- Local Chair in International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO’19)
- Local Chair in International Conference on Computational Intelligence in Security for Information Systems (CISIS’19)
- Local Chair in International Conference on EUropean Transnational Educational (ICEUTE’19)
- Special Session in International Work-Conference on Time Series Analysis (ITISE’17)
- General Chair in I Encuentro empresarial para el desarrollo de proyectos I+D+i en el entorno big data (EEBIG’18)
- Local Chair in Artificial Intelligence Summer School (EVIA’16)
- Local Chair in International Conference on Hybrid Artificial Intelligence Systems (HAIS’16)
- Special Session in IEEE International Conference on Hybrid Artificial Intelligence Systems (HAIS’11, HAIS’13)
- Special Session in IEEE World Congress on Nature and Biologically Inspired Computing (NABIC’11)
- Special Session in International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO’13, SOCO’14)
- ACM/SIGAPP International Symposium on Applied Computing (SAC’22)
- International Conference on Artificial Intelligence and Machine Learning (CAIML’20)
- International Conference on Internet of Things, Big Data and Security (IoTBS’17, IoTBS’18, IoTBS’19, IoTBS’20)
- International Conference on Soft Computing and Pattern Recognition (SoCPaR’18)
- IEEE International Conference on Hybrid Artificial Intelligence Systems (HAIS’11, HAIS’12, HAIS’13, HAIS’14, HAIS’15, HAIS’16, HAIS’17, HAIS’18, HAIS’19, HAIS’20)
- International Conference on Knowledge Discovery and Information Retrieval (KDIR’11, KDIR’12, KDIR’13, KDIR’14, KDIR’15, KDIR’16)
- IEEE International Conference on Data Mining – Workshop DaMEMO (ICDM’16)
- International Conference on Agents and Artificial Intelligence (ICAART’13, ICAART’14, ICAART’15, ICAART’16, ICAART’17, ICAART’18, ICAART’19)
- International Conference on Pattern Recognition Applications and Methods (ICPRAM’13, ICPRAM’14, ICPRAM’15, ICPRAM’16, ICPRAM’17, ICPRAM’18, ICPRAM’19)
- International Work-Conference on Bioinformatics and Biomedical Engineering (IWBBIO’13, IWBBIO’14, IWBBIO’15, IWBBIO’16, IWBBIO’17, IWBBIO’18, IWBBIO’19, IWBBIO’20)
- International Joint Conference on Computational Intelligence (IJCCI’17)
- International Conference on Man-Machine Interactions (ICMMI’11, ICMMI’13, ICMMI’15, ICMMI’17, ICMMI’19)
- International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO’15, SOCO’16, SOCO’17, SOCO’18, SOCO’19, SOCO’20)
- International Work-Conference on Time Series (ITISE’14, ITISE’15, ITISE’16, ITISE’17, ITISE’18, ITISE’19, ITISE’20)
- Simposio de Teoría y Minería de Datos (TAMIDA’10, TAMIDA’13, TAMIDA’15, TAMIDA’16, TAMIDA’18, TAMIDA’20)
- International Workshop on Data Analytics for Renewable Energy Integration (DARE’14, DARE’16, DARE’17)
- European Network Intelligence Conference (ENIC’16)
- Mexican International Conference on Artificial Intelligence (MICAI’13, MICAI’14, MICAI’15)
- Euro-China Conference on Intelligent Data Analysis and Applications (ECC’14)
- IEEE Symposium on Computational Intelligence in Industry (CII’13)
- World Congress on Information and Communication Technologies (WICT’12)
- International Conference on Neural Computation Theory and Applications (NCTA’12, NCTA’13, NCTA’14)
- International Conference on Evoluationary Computation Theory and Applications (ECTA’12, ECTA’13)
- Jornadas Andaluzas de Informática (JAI’11)
- Workshop on Time Series (WTS’11)
- IEEE International Conference on Intelligent Systems Design and Applications (ISDA’09, ISDA’12, ISDA’13)
- International Workshop on Mining of Non-Conventional Data (MINCODA’09)
- International Conference on Enterprise Information Systems (ICEIS’08)
- International Workshop on Data Mining and Artificial Intelligence (DMAI’08, DMAI’09)
- Latin Ibero-American Congress on Operations Research (CLAIO’08)
- International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems (IEA-AIE’10)
- IEEE International Conference on Hybrid Systems (HIS’08)
- European Conference on Machine Learning (ECML’07)
- Jornadas de Ingeniería del Software y Bases de Datos (JISBD’07)
- Conferencia de la Asociación Española de Inteligencia Artificial (CAEPIA‘07)
- International Conference on Intelligent Data Engineering and Automated Learning (IDEAL‘07)
Students
1. Ricardo L. Talavera Llames. Técnicas avanzadas de predicción para big data en el contexto de las smart cities.
Co-directed with Dr. Alicia Troncoso. 2016-2019.
2. Antonio Galicia de Castro. Técnicas de predicción escalables para big data temporales.
Co-directed with Dr. Alicia Troncoso. 2017-2019.
3. José L. Amaro Mellado. Statistical analysis of different seismogenic zonings of the Iberian Peninsula and adjacent areas through a GIS.
Co-directed with Dr. Antonio Morales Esteban. 2015-2019 (awarded with the International Mention and the extraordinary Ph.D. prize).
4. Rubén Pérez Chacón. Desarrollo de modelos basados en patrones para la predicción de series temporales en entornos big data.
Co-directed with Dr. Alicia Troncoso. 2016-2021.
5. José Francisco Torres Maldonado. Modelos predictivos basados en deep learning para datos temporales masivos.
Co-directed with Dr. Alicia Troncoso. 2019-2022 (awarded with the extraordinary Ph.D. prize).
6. Antonio M. Fernández Gómez. Nuevos modelos para la gestión eficiente de infraestructuras big data streaming en entornos IoT con aplicación a la Industria 4.0.
Co-directed with Dr. Alicia Troncoso. 2018-2023 (awarded with the Industrial Mention).
7. Dalil Hadjout. New predictive models based on ensemble and deep learning applied to the electric market.
Co-directed with Dr. Abderrazak Sebaa. 2020-2024 (awarded with the Industrial Mention).
8. Ejigu Habtemariam Tefera. Ensemble deep learning with cluster-based user profiles identification for energy consumption prediction
Co-directed with Dr. María Martínez Ballesteros. 2018-2024.
9. Miguel Ángel Molina Cabanillas. 2018-?
Co-directed with Dr. Gualberto Asencio Cortés.
10. Ángela R. Troncoso-García. 2022-?
Co-directed with Dr. Alicia Troncoso.
1. Álvaro Pita Martín (2012): Una metaheurística para la extracción de reglas de asociación. Aplicación a terremotos.
Co-directed with Dr. Alicia Troncoso.
2. José María Luna Romera (2012): Minería de datos aplicada a la predicción de terremotos.
Co-directed with Dr. José Riquelme.
3. Ricardo L. Talavera Llames (2013): Desarrollo de una metodología para el reconocimiento de patrones precursores de grandes terremotos.
Co-directed with Dr. José Riquelme.
4. Francisco Javier Galán Montaño (2013): Metodología para el análisis de terremotos de gran magnitud.
Co-directed with Dr. Cristina Rubio-Escudero.
5. José A. Martín Bermúdez (2014): Desarrollo de un algoritmo de predicción de series temporales usando en big data.
Co-directed with Dr. José Riquelme.
6. Antonio Galicia de Castro (2017): Técnicas escalables para la predicción de series temporales de gran dimensión.
7. Carlos Alberto Silva Hoyos (2017): Sistema de información para el análisis de datos masivos. Aplicación a un entorno real.
8. Reyes Urbano Fernández (2018), Horizonte big data.
Co-directed with Dr. Cristina Rubio-Escudero.
9. Patricia Jiménez Herrera (2018): Aprendizaje automático de características a partir de imágenes usando Deep Learning.
10. José Antonio Gómez Álvarez (2018): Análisis de distintos tipos de datos sanitarios asociados a pacientes con enfermedad diagnosticada, enfocado a la detección de patrones y tendencias que permitan predecir y evitar futuras complicaciones y enfermedades.
Co-directed with Dr. Cristina Rubio-Escudero.
11. Samuel Conesa Ordóñez (2019): Explotación de bases de datos NoSQL en entornos big data.
Co-directed with Dr. Gualberto Asencio Cortés
12. Marina Cortés Vargas (2019): Infraestructura escalable y visual para el desarrollo y producción de modelos Big Data.
Co-directed with Dr. Gualberto Asencio Cortés
13. María de los Ángeles Alférez Cosme (2020): Sistema detector de gas explosivo.
14. Juan Manuel García Benítez (2020): UPO Energy – Solución de rendimiento y control energético para la Universidad Pablo de Olavide.
15. Cristina Segarra Martín (2021): Algoritmo bioinspirado basado en el coronavirus para reglas de asociación.
Co-directed with Dr. Alicia Troncoso.
16. Francisco Jesús Rosado Recio (2022): Análsis de tecnologías big data para e-discovery: aplicación a casos prácticos.
17. Héctor Antonio Moreno Martín (2024): Comparativa de algoritmos para energías renovables basados en deep learning.
Co-directed with Dr. Alicia Troncoso.
18. Adrián Gil Gamboa (2024): Redes neuronales profundas para el consumo de agua en el medio plazo.
Co-directed with Dr. Alicia Troncoso.
1. Daniel Muñiz Amian (2015): Earthquake Predictor.
2. Luis C. Díaz Chamorro (2015): Desarrollo de un algoritmo para la detección automática de patrones precursores de terremotos.
3. Manuel J. Fernández (2015): Desarrollo de una metaheurística basada en aprendizaje de datos no balanceados para la predicción de terremotos de gran magnitud.
4. Antonio M. Fernández Gómez (2016): Servicio web para el despliegue automático de clusters Spark con integración de aplicaciones.
5. Samuel Conesa Ordóñez (2017): Sistema de gestión interna de Hermandades.
6. José F. Torres Maldonado (2017). Sistema de información para el despliegue remoto de clusters y procesamiento de grandes volúmenes de datos.
7. Daniel Expósito Jaramillo (2018). Sistema de información para el tratamiento de datos masivos usando computación de alto rendimiento.
8. José A. Díaz Romero (2018). Sistema de gestión interna de paquetería.
9. Juan Antonio Rodríguez Rodríguez (2019). Sistema de información para la explotación de datos masivos en el contexto de IoT.
10. Juan Antonio Ortíz Martín (2021). Sistema de información para la ayuda a la accesibilidad en centros educativos.
11. Juan Alberto Gallardo Gómez (2021). Métodos de aprendizaje automático para análisis de datos en smart cities (co-directed with Prof. Federico Divina)
12. José Luis Cerdá Madueño (2021). Sistema de información para la consulta y autodiagnóstico de patologías asociadas al campo de la fisioterapia.
13. Alejandro Govantes Pola (2022). OpenDeck: Stream deck con Arduino.
14. Alejandro Enrique Espada Pino (2023). Njord: Sistema inteligente para análisis bursátil
15. Eugenio Menacho de Góngora (2023). AlphaUPO: Inteligencia artificial para el ajedrez.
Publications
2024 |
Explainable Deep Learning with Embedded Feature Selection for Electricity Demand Forecasting Conference SST International Conference on Smart Systems and Technologies, 2024. |
Embedded feature selection for neural networks via learnable drop layer Journal Article In: Logic Journal of the IGPL, pp. jzae062, 2024. |
Ground-Level Ozone Forecasting using Explainable Machine Learning Conference CAEPIA Conference of the Spanish Association for Artificial Intelligence, vol. 14640, Lecture Notes in Artificial Intelligence 2024. |
CAEPIA Conference of the Spanish Association for Artificial Intelligence, Lecture Notes in Artificial Intelligence 2024. |
Explaining deep learning models for ozone pollution prediction via embedded feature selection Journal Article In: Applied Soft Computing, vol. 157, pp. 111504, 2024. |
An evolutionary triclustering approach to discover electricity consumption patterns in France Conference SAC 39th Annual ACM Symposium on Applied Computing, 2024. |
Pattern sequence-based algorithm for multivariate big data time series forecasting: Application to electricity consumption Journal Article In: Future Generation Computer Systems, vol. 154, pp. 397-412, 2024. |
Special issue on Advances in Time Series Forecasting Journal Article In: AIMS Mathematics, vol. 9, iss. 9, pp. 24163-24165, 2024. |
Emerging trends in big data analytics and natural disasters (Editorial) Journal Article In: Computers and Geosciences, vol. 182, pp. 105465, 2024. |
From Simple to Complex: A Sequential Method for Enhancing Time Series Forecasting with Deep Learning Journal Article In: Logic Journal of the IGPL, pp. jzae030, 2024. |
2023 |
Explainable hybrid deep learning and Coronavirus Optimization Algorithm for improving evapotranspiration forecasting Journal Article In: Computers and Electronics in Agriculture, vol. 215, pp. 108387, 2023. |
Electricity consumption forecasting with outliers handling based on clustering and deep learning with application to the Algerian market Journal Article In: Expert Systems with Applications, vol. 227, pp. 120123, 2023. |
Embedded Temporal Feature Selection for Time Series Forecasting Using Deep Learning Conference IWANN 17th International Work-Conference on Artificial Neural Networks, vol. 14135, Lecture Notes in Computer Science 2023. |
Predicting Wildfires in the Caribbean Using Multi-source Satellite Data and Deep Learning Conference IWANN 17th International Work-Conference on Artificial Neural Networks, vol. 14135, Lecture Notes in Computer Science 2023. |
Springer, vol. 748, 2023, ISBN: 978-3-031-42519-6. |