Publications

 

Show all

2025

A.R. Troncoso-García and M. Martínez-Ballesteros and F. Martínez-Álvarez and A. Troncoso

Feature Importance in Association Rule-Based Explanations for Time Series Forecasting Conference

IDEAL 26th International Conference on Intelligent Data Engineering and Automated Learning, Lecture Notes in Artificial Intelligence 2025.

Links | BibTeX | Tags: association rules, forecasting, time series, XAI

Z. Wang and I. Koprinska and M. Martínez-Ballesteros and A. Troncoso and B. Jeffries

Comparison of Explainable Machine Learning Methods for Early Prediction of Student Performance in Programming Courses Conference

AIED 26th International Conference on Artificial Intelligence in Education, 2025.

Links | BibTeX | Tags: association rules, education

C. Herruzo-Lodeiro and F. Rodríguez-Díaz and A. Troncoso and M. Martínez-Ballesteros

Bioinspired evolutionary metaheuristic based on COVID spread for discovering numerical association rules Conference

SAC 40th ACM/SIGAPP Symposium on Applied Computing, 2025.

Links | BibTeX | Tags: association rules, pattern recognition

N. Ullah and F. Guzmán-Aroca and F. Martínez-Álvarez and I. De Falco and G. Sannino

A Novel Explainable AI Framework for Medical Image Classification Integrating Statistical, Visual, and Rule-Based Methods Journal Article

In: Medical Image Analysis, vol. 105, pp. 103665, 2025.

Abstract | Links | BibTeX | Tags: association rules, deep learning, feature selection, XAI

A. R. Troncoso-García and M. Martínez-Ballesteros and F. Martínez-Álvarez and A. Troncoso

A new metric based on association rules to assess explainability techniques for time series forecasting Journal Article

In: IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 47, no. 5, pp. 4140-4155, 2025.

Abstract | Links | BibTeX | Tags: association rules, forecasting, time series, XAI

2023

A. R. Troncoso-García and M. Martínez-Ballesteros and F. Mártinez-Álvarez and A. Troncoso

A new approach based on association rules to add explainability to time series forecasting models Journal Article

In: Information Fusion, vol. 94, pp. 169-180, 2023.

Abstract | Links | BibTeX | Tags: association rules, time series, XAI

2022

A. R. Troncoso-García and M. Martínez-Ballesteros and F. Martínez-Álvarez and A. Troncoso

Explainable machine learning for sleep apnea prediction Conference

KES International Conference on Knowledge Based and Intelligent information and Engineering Systems, 2022.

Abstract | Links | BibTeX | Tags: association rules, deep learning, time series, XAI

C. Segarra-Martín and M. Martínez-Ballesteros and A. Troncoso and F. Martínez-Álvarez

A novel approach to discover numerical association based on the Coronavirus Optimization Algorithm Conference

SAC 37th Symposium On Applied Computing, 2022.

Abstract | BibTeX | Tags: association rules

2020

F. Moleshi and A. Haeri and F. Martínez-Álvarez

A novel hybrid GA–PSO framework for mining quantitative association rules Journal Article

In: Soft Computing, vol. 24, no. 6, pp. 4645-4666, 2020.

Abstract | Links | BibTeX | Tags: association rules

2016

M. Martínez-Ballesteros and A. Troncoso and F. Martínez-Álvarez and J. C. Riquelme

Improving a multi-objective evolutionary algorithm to discover quantitative association rules Journal Article

In: Knowledge and Information Systems, vol. 49, pp. 481-509, 2016.

Links | BibTeX | Tags: association rules

M. Martínez-Ballesteros and F. Martínez-Álvarez and A. Troncoso and J. C. Riquelme

Obtaining optimal quality measures for quantitative association rules Journal Article

In: Neurocomputing, vol. 176, pp. 36-47, 2016.

Abstract | Links | BibTeX | Tags: association rules

2015

M. Martínez-Ballesteros and J. Bacardit and A. Troncoso and J. C. Riquelme

Mining Enhancing the scalability of a genetic algorithm to discover quantitative association rules in large-scale datasets Journal Article

In: Integrated Computer-Aided Engineering, vol. 22, no. 1, pp. 21-39, 2015.

Abstract | Links | BibTeX | Tags: association rules

2014

M. Martínez-Ballesteros and F. Martínez-Álvarez and A. Troncoso and J. C. Riquelme

Selecting the Best Measures to Discover Quantitative Association Rules Journal Article

In: Neurocomputing, vol. 126, pp. 3-14, 2014.

Abstract | Links | BibTeX | Tags: association rules

2013

M. Martínez-Ballesteros and F. Martínez-Álvarez and A. Troncoso and J. C. Riquelme

A sensitivity analysis for quality measures of quantitative association rules Conference

HAIS 8th International Conference on Hibryd Artificial Intelligence Systems, Lecture Notes in Computer Science 2013.

Links | BibTeX | Tags: association rules

2011

M. Martínez-Ballesteros and F. Martínez-Álvarez and A. Troncoso and J. C. Riquelme

An Evolutionary Algorithm to Discover Quantitative Association Rules in Multidimensional Time Series Journal Article

In: Soft Computing, vol. 15, no. 10, pp. 2065-2084, 2011.

Abstract | Links | BibTeX | Tags: association rules

M. Martínez-Ballesteros and C. Rubio-Escudero and J. C. Riquelme and F. Martínez-Álvarez

Mining quantitative association rules in microarray data using evolutive algorithms Conference

International Conference on Agents and Artificial Intelligence (ICAART'11), 2011.

BibTeX | Tags: association rules

2010

M. Martínez-Ballesteros and A. Troncoso and F. Martínez-Álvarez and J. C. Riquelme

Mining Quantitative Association Rules Based on Evolutionary Computation and its Application to Atmospheric Pollution Journal Article

In: Integrated Computer-Aided Engineering, vol. 17, pp. 227-242, 2010.

Abstract | Links | BibTeX | Tags: association rules

2009

M. Martínez-Ballesteros and F. Martínez-Álvarez and A. Troncoso and J. C. Riquelme

Descubriendo Reglas de Asociación Numéricas entre Series Temporales Workshop

CAEPIA XIII Conferencia de la Asociación Española para la Inteligencia Artificial. MINCODA I Workshop International on Mining of Non-Conventional Data, 2009.

BibTeX | Tags: association rules

M. Martínez-Ballesteros and F. Martínez-Álvarez and A. Troncoso and J. C. Riquelme

Quantitative Association Rules Applied to Climatological Time Series Forecasting Conference

IDEAL Intelligent Data Engineering and Automated Learning, Lecture Notes in Computer Science 2009.

Links | BibTeX | Tags: association rules